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Reduced-Order Aerodynamic Model and Its Application
to a Nonlinear Aeroelastic System

Deman Tang,* Mark D. Conner,† and Earl H. Dowell‡
Duke University, Durham, North Carolina 27708-0300

Starting from a � nite state model for a two-dimensional aerodynamic � ow over an airfoil, the eigen-
modes of the aerodynamic � ow are determined. Using a small number of these aerodynamic eigenmodes,
i.e., a reduced-order model, the aeroelastic model is formed by coupling them to a typical section struc-
tural model with a trailing-edge � ap. A free-play nonlinearity is modeled. Results are shown from the
� nite state model, the reduced-order model, and previous theoretical and experimental work. All results
are in good agreement.

Nomenclature
b = semichord of the airfoil section, c /2
c = chord of the airfoil section
h, h̄ = plunge displacement, h /b
L = lift force
M = size of reduced-order aerodynamic model
Ma,c/4 = torsional moment about the quarter-chord
Mr = reference mass/length of wing – aileron

system
Mb = � ap moment about the � ap axis
N = number of in� ow states
n = expansion index of the deformable airfoil
q = aerodynamic modal coordinate
t = time
U = airspeed
U f = � utter airspeed
a = torsional angle of wing
b = � ap rotational angle
d = freeplay region
L = eigenvalue matrix
l = induced � ow velocity
lR, lI = real and imaginary part of the eigenvalue
lR, lL = right and left eigenvectors
r = air density
t = nondimensional time, tU/b
vh, va = plunge and torsional natural frequencies
vb = � ap natural frequency

Ç = d( )/dt
9 = d( )/dt

Introduction

A N earlier theoretical/experimental study of an aeroelastic
wing system with a trailing-edge � ap including structural

freeplay has been presented.1 Following the work of Ref. 1, in
the present paper we use Peters’ � nite state airloads model for
a deformable airfoil2 to replace the state-space model proposed
by Edwards et al.3 and previously used in Ref. 1. Peters’ the-
ory2 allows for a thin airfoil performing small arbitrary mo-
tions with respect to a reference frame that can perform arbi-
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trarily large translations and rotations in two dimensions. This
aerodynamic model is derived from potential � ow theory with
no restrictive assumptions on the time history of airfoil mo-
tions. The aerodynamic states are the coef� cients of a set of
induced-� ow expansions and are constructed as a set of � rst-
order state equations that is easily coupled to the structural
equations.

Although, as indicated in Ref. 4, excellent results for the
unsteady aerodynamic forces were found with Peters’ � nite
state model2 with only a relatively few states when compared
with those results obtained with Theodorsen and Wagner aer-
odynamic theories,5 there is still an opportunity for improve-
ment. Here, we explore how to retain the accuracy of Peters’
aerodynamic model2 while achieving a minimum number of
states. The � rst important step was taken by Peters,2 who used
the least-squares method to obtain a set of � rst-order state
equations from the potential � ow theory. The second step is to
extract the most important aerodynamic eigenmodes from the
� rst-order state equations (following earlier work described in
Ref. 6), that are then coupled with the structural equations.

This paper also considers the nonlinear aeroelastic phenom-
ena of a typical airfoil section with control surface freeplay
using this new aerodynamic model. The theoretical predictions
indicate both a high-amplitude (low-frequency) and a low-am-
plitude (high-frequency) steady-state limit cycle oscillation.
Between these two limit cycle oscillations there is an abrupt
amplitude change, especially for the plunge motion, when the
airspeed reaches a certain value. The low-frequency limit cycle
suddenly becomes unstable, and the system is attracted to a
stable, high-frequency limit cycle. The effect of the initial con-
ditions on the nonlinear behavior is also discussed.

Peters developed a three-dimensional rotor wake model7 that
is also in � nite state form.

State – Space Equations
A schematic of a typical airfoil section with a control surface

at the trailing edge of the main wing is shown in Fig. 1. There
is a structural freeplay nonlinearity that produces a piecewise
linear change in the structural stiffness of the control surface
as shown in Fig. 2. Because the aeroelastic typical section has
three degrees of freedom (DOF), h, a, and b of the control
surface, there are six structural DOFs in the state – space. The
differential equations of motion in matrix form, Eq. (1), ex-
pressing the equilibrium of the moments about point a of the
entire airfoil, of the moments on the control surface about
point c, and of the vertical forces on the airfoil (Fig. 1), are
as follows:

[M ]{ ÿ} 1 [C ]{yÇ} 1 [K ]{y} 1 {M } = [S ]{F } (1)s s s b 1 a
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Fig. 1 Aeroelastic typical section with control surface.

Fig. 2 Restoring moment caused by Kb with a symmetric free-
play region about b = 0.

where { y} is expressed as {h, a, b}T, {Mb} = {0, 0, Mb}T

1/M b 0 0r
2[S ] = 0 1/M b 01 rF G

20 0 1/M br

K 0 0h

[K ] = 0 K 0s aF G
0 0 nKb

When the structural freeplay gap d is zero, then n = 1 and
Mb = 0, and when the structural freeplay gap is not zero, then
n = 0 and the control surface moment – rotation relationships
may be expressed as

K (b 2 d) ub u $ d, b > 0b

M = K (b 1 d) ub u $ d, b < 0 (2)b bH
0 otherwise

[Cs] is the structural damping matrix. An attempt has been
made here to include structural damping in the numerical
model in a logical and physically meaningful way using vis-
cous modal damping coef� cients.1

The right-hand side (RHS) of Eq.(1) forms a vector of aero-
dynamic forces {Fa} = {L, , Mb}

T. We use Peters’ � niteMa ,c/4

state incompressible airloads model for a deformable airfoil2

to determine these aerodynamic forces. They are

T{F } = [T ] {L } (3)a m

where

2{L } = 2prbUl {c } 2 2prU [K ][T ]{y}m a 1

22 2prbU[C ][T ]{yÇ} 2 prb [M ][T ]{ ÿ}

= l { p} 2 [K ]{y} 2 [C ]{yÇ} 2 [M ]{ ÿ}a a a a

For matrices [T ], {c1}, [K ], [C ], and [M ] (see Ref. 2). The
induced � ow velocity la is approximately determined by

N
1

l ’ b l (4)a i iO2 i=1

The closed-form expressions for the bi are given in Appen-
dix C of Ref. 4. The result of Peters’ analysis is a set of � nite
state equations for the aerodynamic unknowns in Peters’ model
(see Ref. 4), which are the in-� ow velocity components, li

and la

Ç[A]{l} 1 (U/b){l} = [B ]{ ÿ} 1 (U/b)[B ]{yÇ} (5)1 2

where the matrix [A] is given in Ref. 4, and

T[B ] = {c }{s } [T ]1 2 2

T[B ] = {c }{s } [T ]2 2 3

T{c } = {2, 1, 2/3 . . . . . . . 2/N }2 N 1*

T T{s } = {1, 1/2, 0, 0, 0 . . . . 0}2 1 n*

T T{s } = {0, 1, 2, 3 . . . . . . n 2 1}3 1 n*

Equation (5) is basically an equation for the time evolution
of vortex transport in the wake of the airfoil. Combining Eqs.
(1 – 5), and de� ning Xe = { yÇ, y, l}T, we obtain a set of state
– space equations with six structural states and N in� ow states.
These equations are

ÇX = A X 1 B (6)e e e e

where

2 1M C 0 0 2K Be e e n

0 M 0 M 0 0e eA =e
U UF G F G

2B 2 B A 0 0 2 I1 2
b b

21M C 0e e 0
0 M 0eB = 2Me bH J

UF G 02B 2 B A1 2
b

where submatrices Me, Ke, and Ce are the equivalent mass,
stiffness, and damping matrices composed of structural and
aerodynamic components, Me = [Ms] 1 [Ma], Ce = [Cs] 1 [Ca],
and Ke = [Ks] 1 [Ka].

Reduced-Order Aerodynamic Model
Reduced-Order Technique

If we assume the structural response to be zero, then from
Eq. (5) one obtains a representation of free � uid motion

Ç[A]{l} 1 (U/b){l} = {0} (7)

De� ning a t normalized on b, and the freestream velocity U,
then t = tU/b and

U dl UÇl = = l9
b dt b

Thus, Eq. (7) becomes

[A]{l9} = 2[I ]{l} (8)
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From Eq. (8), an aerodynamic eigenvalue problem may be
formed.

Because the matrix [A] is nonsymmetric, we must compute
the right and left eigenvalues and eigenvectors of the gener-
alized eigenvalue problem. They are

R R[A][l ]L = 2[I ][l ] (9)

T L L[A] [l ]L = 2[I ][l ] (10)

where [lR] and [lL] are the right and left eigenvector matrices,
respectively, and L is a diagonal matrix whose diagonal entries
contain the eigenvalues, and [I ] is a diagonal identity matrix.

The right and left eigenvectors are orthogonal with respect
to the matrix [A] and [I ]. We normalize the eigenvectors such
that they are orthonormal with respect to [A]. Therefore,

L T R[l ] [A][l ] = [I ] (11)

L T R[l ] [l ] = 2[L] (12)

Next, we let the induced � ow vector {l} be a linear com-
bination of the m right eigenvectors (where in practice m <<
N ), i.e.,

R{l} = [l ]{q} (13)m

where {q} is the vector of modal coordinates. Substitution of
Eq. (13) into Eq. (5), premultiplying Eq. (5) by , andL T[l ]m

making use of the orthogonality conditions [Eqs. (11) and
(12)], yields the new aeroelastic model

[M ]{ ÿ} 1 [C ]{yÇ } 1 [K ]{y} 1 {M }e e e b

R2 [B ][l ]{q} = {0}m m
(14)

L T{qÇ } 1 (U/b)[L]{q} 2 [l ] ([B ]{ ÿ}m 1

1 (U/b)[B ]{yÇ }) = {0}2

Let Xd = { yÇ , y, q}T. The resulting aeroelastic system of the
reduced-order state variable equations is given by

ÇX = A X 1 B (15)d d d d

where

2 1M C 0 0 2K Be e e m

0 M 0 M 0 0e eA =d
U UF G F G

2B 2 B I 0 0 2 L3 4
b b

21M C 0e e 0
0 M 0eB = 2Me bH J

UF G 02B 2 B I3 4b

where

L T L T RB = [l ] [B ], B = [l ] [B ], B = [B ][l ]3 1 4 2 m n

Static Correction Technique

One � nds that with the reduced-order model, the � rst few
aerodynamic eigenmodes (those having very small aerody-
namic damping) must be retained in the model to obtain ac-
curate results. However, while the dominant eigenmodes have
been retained, all of the eigenmodes participate in the response
to some degree. To account for the neglected eigenmodes,
therefore, we use a quasistatic correction that may account for
much of their in� uence. This technique is similar to the mode-
acceleration method common to structural dynamics and was

� rst suggested in the context of � uid eigenmode analysis by
Hall and Florea.8 Thus, let

{l} = {l } 1 {l } (16)s d

The � rst term on the RHS is a quasistatic solution of the
induced � ow, and the second term is a dynamic perturbation
solution. From Eq. (5), {ls} is de� ned by

{l } [ (b/U)([B ]{ ÿ} 1 (U/b)[B ]{yÇ}) (17)s 1 2

Substitution of Eqs. (16) and (17) into Eq. (5) gives an equa-
tion for ld

Ç Ç[A]{l } 1 (U/b){l } = 2[A]{l } (18)d d s

Expanding ld in terms of the eigenmodes gives

R{l } = [l ]{q} (19)d m

and for Xs = { y, yÇ, ÿ, q}T, the resulting system of reduced-
order aeroelastic equations with a static correction to the aero-
dynamic model is given by

ÇG X = A X 1 B (20)s s s s s

where

2K 0 0 2Be m

0 M 0 0s

A =s 0 0 q 0dF GU
0 0 0 L

b

C M 0 0s s

M 0 0 0sG =s 0 q 0 0dF G
0 q q Ic d

TB = {2M , 0, 0, 0}s b

M = [M ] 2 (b/U )[B ][B ]s e n 1

C = [C ] 2 [B ][B ]s e n 2

L Tq = [l ] [A][B ]c 2

L Tq = [l ] [A][B ]d 1

Numerical Results
The parameters of the numerical model comes from the ex-

perimental model previously described.1 The nominal values
for the inertial, stiffness, and damping parameters of the ex-
perimental structural system were measured. A summary of the
system parameters is given in the following:

Geometry parameters:
Chord = 0.254 m
span = 0.52 m
b = 0.127
Elastic axis (a) with respect to (b) = 20.5
Hinge line (c) with respect to (b) = 0.5

Mass parameters:
Mass of wing = 0.62868 kg
Mass of aileron = 0.18597 kg
Mass/length of wing – aileron = 1.558 kg
(Mass of support blocks) = (0.47485 3 2 kg)
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Fig. 4 Eigenvalue solutions of the linear system for using re-
duced-order model with M = 4. a) Real part and b) root – locus;
line a is dominated by the plunge, line b by the torsion, line c by
the � ap rotation, and lines d1, d2, d3, and d4 by the induced-� ow
aerodynamics. The arrows indicate the direction of motion of the
loci when U increases.

Fig. 3 Relative � utter speed to the � utter speed obtained from
Peters’ model2 of N = 10 vs M, or N. 1, reduced-order model; 3,
reduced-order model with static correction; and D, Peters’ model.

Table 1 Coupled natural frequencies

Numerical, Hz Experimental, Hz % Difference

va(coupled) 9.218 9.125 1.02
vb(coupled) 19.442 18.625 4.39
vh(coupled) 4.455 4.375 1.82

Inertial parameters:
Sa (per span) = 0.08587 kg m
Sb (per span) = 0.00395 kg m
xa = 0.434
xb = 0.01996
Ia (per span) = 0.01347 kg m2

Ib (per span) = 0.0003264 kg m2

ra = 0.7321
rb = 0.11397
k = 0.03984

Stiffness parameters:
Ka (per span) = 1486 1/s2

Kb (per span) = 155 1/s2

Kh (per span) = 1809 1/s2

Damping parameters:
za (half-power) = 0.01626
zb (half-power) = 0.0115
zh (half-power) = 0.0113

A comparison of the structural natural frequencies for the nu-
merical and experimental systems is given in Table 1.

Stability of the Linear Aeroelastic Model

When the freeplay gap is zero, a linear aeroelastic model is
obtained. For the linear system as given by Eqs. (6), (15), and
(20), the nonlinear terms Be, Bd, and Bs are set to zero, and for
the coef� cient in the structural stiffness submatrix, n = 1. The
eigenvalues of the Ae or Ad determine the stability of the sys-
tem. When the real part of any one eigenvalue becomes pos-
itive, the entire system becomes unstable. Note that in Eq. (20),
because Gs is noninvertible, we change Eq. (20) to

21 ÇA G X = X (21)s s s s

The inverted eigenvalues of the can also determine2 1A Gs s

the stability of this system. For Eq. (21), numerical results are
shown in Fig. 3. In Peters’ induced � ow model,2 we use the
augmented closed-form to calculate the coef� cients bi. The
number of in� ow states is taken as N = 10, and the expansion
index, n = 10 (Ref. 2). The computation used double-precision
arithmetic. In Fig. 3, the abscissa indicates the size of the re-
duced-order aerodynamic model M, and also N for Peters’
model.2 The ordinate indicates the ratio of the � utter velocity
to the � utter velocity obtained from Peter’s model for N = 10,

which is equal to Uf = 23.81 m/s (Ref. 2). It is interesting to
note that when M = 2 and the static correction is included, the
present results are in excellent agreement with the result for
Peters’ model when N = 10 (Ref. 2). However when N = 2 for
Peters’ model,2 the corresponding ratio is 0.915 (Fig. 3). Thus,
the present model has greater accuracy for a smaller number
of aerodynamic states.

Figure 4 shows a typical graphical representation of the ei-
genanalysis in the forms of lR vs the velocity and also a root –

locus plot for the nominal linear system using a reduced-order
model with M = 4. The solutions are assumed in the form of
elt. There is an intersection of lR with the velocity axis, U f =
23.81 m/s, which is the � utter critical velocity with the cor-
responding � utter oscillatory frequency vf = 38.5 rad/s (6.13
Hz). By contrast, the experimental � utter speed and frequency
are 20.57 m/s and 5.47 Hz, respectively. The numerical results
are approximately 15 and 12% higher than the experimental
values. The most likely sources for these differences are phys-
ical phenomena, including inherent structural nonlinearities,
that are not incorporated into the present theoretical model.
These nonlinearities are evidenced by the fact that at speeds
near the � utter boundary, a small perturbation of the linear
system may result in decaying oscillations, while a slightly
larger perturbation could lead to divergent motion. Other rea-
sons for theoretical/experimental differences may be a low es-
timate of the structural damping as a result of neglecting the
dry friction in the rotational link mechanism (bearings), and
also to neglecting possible three-dimensional aerodynamic
wall effects.

There are seven curves for the real parts of the eigenvalues
denoted by a, b, c and d1, d2, d3, d4, as marked in Fig. 4. To
determine the modal content of these results, the corresponding
eigenvectors were examined. It was determined that curve a is
dominated by the plunge motion of this model, b by the tor-
sion, c by the � ap rotation, and d1, d2, d3, d4 by aerodynamic
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Fig. 8 Limit cycle oscillations for U 5 0.73 3 Uf and d 5 62.12
deg: a) torsion, b) � ap rotation, and c) plunge. --, reduced-order
model with M 5 4; ? ? ?, Ref. 1; and ——, experiment.

Fig. 7 Limit cycle oscillations for U 5 0.49 3 Uf and d 5 62.12
deg: a) torsion, b) � ap rotation, and c) plunge. --, reduced-order
model with M 5 4; ? ? ?, Ref. 1; and ——, experiment.

Fig. 6 Limit cycle oscillations for U = 0.27 3 Uf and d 5 62.12
deg: a) torsion, b) � ap rotation, and c) plunge. --, reduced-order
model with M = 4, ? ? ?, Ref. 1; and ——, experiment.

Fig. 5 Limit cycle oscillations for U = 0.49 3 Uf and d 5 62.12
deg: a) torsion, b) � ap rotation, and c) plunge. --, M = 2; —,
M = 4 of reduced-order model; and – ? – , Peters’ model2 with
N 5 10.

in� ow modal behavior per se. From Fig. 4, it is found that the
linear � utter is dominated by the plunge motion, although other
zero airspeed or in vacuo modes are also present to some de-
gree. Figure 4b is the locus of roots for this case.

Nonlinear Model

We used a standard Runge – Kutta algorithm in conjunction
with the Peters’ aerodynamic model,2 Eq. (6), and the present
reduced order model, Eq. (15), for time integrating the nonlin-
ear equations. To determine the nonlinear behavior of the typ-
ical airfoil section with control surface freeplay, a comparison
has been made using different aerodynamic models and dif-
ferent reduced-order numbers. A typical example for U = 0.49
3 Uf and a freeplay region of d = 62.12 deg is shown in Fig.

5. Figures 5a – 5c are steady-state limit cycle oscillations under
the same nonzero initial conditions in � ap, which served to
excite the system. The results are very close for the reduced-
order model of M = 2 and 4, and the Peters’ model2 of N =
10. The most signi� cant, but still small, difference comes from
the initial phase shift and static equilibrium position of the
system that is caused primarily by the quasistatic aerodynamic
forces used in the reduced-order aerodynamic model.

Comparisons with the experimental results have been made
for varying degrees of control surface freeplay. Three freeplay
con� gurations were studied theoretically and experimentally,
corresponding to freeplay regions of 61.15, 61.83, and 62.12
deg (Gap 1, Gap 2, and Gap 3, respectively). For each of the
three cases, the model was placed in the wind tunnel such that
the control surface was resting at one edge of the freeplay
region. As the air� ow in the tunnel was increased, this nonzero
initial condition in the � ap served to excite the system, causing
the wing to settle into a steady-state limit cycle. The air� ow
was slowly increased to a new value and reached a new steady-
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Fig. 10 Limit cycle frequency vs relative airspeed U/Uf: a) tor-
sion, b) � ap rotation, and c) plunge. 1 (Gap 1), 3 (Gap 2), and
* (Gap 3) are from experiment; are from Ref. 1, and are
from reduced-order model with M 5 4.

Fig. 9 Limit cycle amplitudes vs relative airspeed U/Uf: a) tor-
sion, b) � ap rotation, and c) plunge. 1 (Gap 1), 3 (Gap 2), and
* (Gap 3) are from experiment; are from Ref. 1 and are from
reduced-order model with M 5 4.

state limit. The behavior of the system was examined at a
variety of freesteam conditions below the linear � utter speed.

Four different types of motion were found from both the
numerical predictions and experiments. For low velocities, U
< 0.18 3 Uf (theory) or U < 0.23 3 U f (experiment), giving
the model an initial disturbance resulted in decaying oscilla-
tions that damped out to zero fairly quickly.

At U ’ 0.18 3 U f (theory) or U ’ 0.23 3 Uf (experiment),
there is a discrete jump from damped motion to a low-fre-
quency limit cycle that is characterized by period one oscil-
lations in the control surface degree of freedom. Figure 6
shows an example of experimental and numerical time series
(the present method and the Ref. 1 method) for this limit cycle

behavior for U = 0.27 3 U f . The two numerical results are
close to each other and there is slightdifference in the oscil-
lation frequencies between the theory and experiment, but the
numerical results do fairly accurately predict both the quali-
tative and quantitative behavior found experimentally. As the
air� ow increases further, the limit cycle amplitude in all three
DOFs increases. This behavior is observed until the air� ow
speed reaches approximately 0.53 3 U f . Characteristic ex-
perimental and numerical time series for this motion are given
in Fig. 7 for U = 0.49 3 U f . A wide variety of initial distur-
bances was applied to the theoretical and experimental systems
and, in each case, the systems settled into the same limit cycle
behavior.

At U ’ 0.55 3 Uf , both for the theoretical and experimental
systems, there is another abrupt change in the system behavior.
The low-frequency limit cycle suddenly becomes unstable, and
the system is attracted to a stable, high-frequency limit cycle.
There is a dramatic drop in the plunge amplitude at this point.
Near this point, the torsion amplitude has a small but complex
change, while the � ap amplitude jumps to a higher level and
remains fairly constant.

For velocities between U ’ 0.56 3 U f and U ’ 0.93 3 U f,
a high-frequency limit cycle oscillation was observed. Again,
a number of initial conditions were applied, each resulting in
the same limit cycle behavior. In this velocity region, typical
experimental and numerical time histories are shown in Fig.
8. Numerical simulations for this set of system parameters in-
dicate that the nonlinear divergent � utter speed is within 2%
of the linear boundary.

Summarizing the preceding four different types of motion,
a limit cycle amplitude vs air� ow speed ratio is shown in Fig.
9. Figure 9a – 9c shows the torsional motion of the wing, the
� ap rotation, and the plunge motion, respectively. The ampli-
tudes shown are based on rms calculations over one cycle of
the numerical and experimental steady-state time histories. The
results obtained from Ref. 1 are also plotted in Fig. 9 for com-
parison of the effects of the two different aerodynamic models
on the nonlinear behavior of the same aeroelastic/structural
system. The numerical results both from Ref. 1 and the present
method are in reasonably good agreement with the experiment.

Figure 10 shows that the limit cycle frequencies for all of
the experimental freeplay regions and the numerical models
are very consistent. The onset of several limit cycles in the
experimental model occur at freestream velocities that are near
the onset of the same limit cycles in the numerical model for
the present method and approximately 10% higher than those
of Ref. 1.
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Concluding Remarks
The � nite state airload model for a deformable airfoil has

been successfully applied to the case of a three DOF typical
section including trailing-edge � ap freeplay. A numerical
model for predicting linear and nonlinear � utter behavior and
limit cycle oscillations has been constructed and veri� ed ex-
perimentally. The results fairly accurately predict the qualita-
tive and quantitative behavior found experimentally.

As a novel feature of the present work, a reduced-order aero-
dynamic technique has been adapted to the state – space theory
for the airloads. The results improved the computational ac-
curacy while using a number of minimum aerodynamic states
that are then incorporated into the nonlinear aeroelastic model.
The present method for representing the aerodynamic forces
is particularly attractive for development of a variety of control
algorithms and � utter suppression for a � xed wing, and also
can be extended to a three-dimensional induced � ow model
for the development of more accurate and computationally ef-
� cient predictions of rotor blade stability and forced response
in helicopter aeroelastic problems.
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